How do you write the partial fraction decomposition of the rational expression (3x^2 + 4x) / (x^2 +1)^2?

1 Answer
Dec 1, 2016

The answer is =(3)/(x^2+1)+(4x-3)/(x^2+1)^2

Explanation:

Let's do the decomposition in partial fractions

(3x^2+4x)/(x^2+1)^2=(Ax+B)/(x^2+1)+(Cx+D)/(x^2+1)^2

=((Ax+B)(x^2+1)+(Cx+D))/(x^2+1)^2

Therefore,

(3x^2+4x)=((Ax+B)(x^2+1)+(Cx+D))

Let x=0, =>, 0=B+D

Coefficients of x^2

3=B

Coefficients of x

4=A+C

Coefficients of x^3

0=A

C=4

=B+D

D=-3

So,

(3x^2+4x)/(x^2+1)^2=(3)/(x^2+1)+(4x-3)/(x^2+1)^2