How do you write the partial fraction decomposition of the rational expression (-3x^2 +3x - 5) / (3x^3 +x^2 + 6x +2)?
1 Answer
Explanation:
Given:
(-3x^2+3x-5)/(3x^3+x^2+6x+2)
Note that the denominator factors as:
3x^3+x^2+6x+2 = (3x+1)(x^2+2)
The quadratic factor
(-3x^2+3x-5)/(3x^3+x^2+6x+2) = A/(3x+1)+(Bx+C)/(x^2+2)
color(white)((-3x^2+3x-5)/(3x^3+x^2+6x+2)) = (A(x^2+2)+(Bx+C)(3x+1))/(3x^3+x^2+6x+2)
color(white)((-3x^2+3x-5)/(3x^3+x^2+6x+2)) = ((A+3B)x^2+(B+3C)x+(2A+C))/(3x^3+x^2+6x+2)
Equating coefficients, this gives us a system of equations:
{ (A+3B=-3), (B+3C=3), (2A+C=-5) :}
Subtracting
-6A+B=18
Subtracting
19A = -57
Dividing both sides by
A = -3
Putting this value of
-3+3B=-3
Hence:
B = 0
Putting this value of
0+3C = 3
Hance:
C = 1
So:
(-3x^2+3x-5)/(3x^3+x^2+6x+2) = -3/(3x+1)+1/(x^2+2)