How do you write the partial fraction decomposition of the rational expression (4x+4)/(x^2(x+2))4x+4x2(x+2)?

2 Answers
Mar 22, 2018

(4x+4)/(x^2(x+2))=1/x+2/x^2-1/(x+2)4x+4x2(x+2)=1x+2x21x+2

Explanation:

As we have x^2(x+2)x2(x+2) in the denominator, we can have partial fractions as

(4x+4)/(x^2(x+2))=A/x+B/x^2+C/(x+2)4x+4x2(x+2)=Ax+Bx2+Cx+2

or 4x+4=Ax(x+2)+B(x+2)+Cx^24x+4=Ax(x+2)+B(x+2)+Cx2 ..............(P)

If we put x=0x=0 in (P), we get 2B=42B=4 i.e. B=2B=2

and if we put x=-2x=2, then 4C=-44C=4 or C=-1C=1

Comparing coefficient of x^2x2 in (P), we get

A+C=0A+C=0 i.e. A=-C=1A=C=1

Hence, partial fractions are

(4x+4)/(x^2(x+2))=1/x+2/x^2-1/(x+2)4x+4x2(x+2)=1x+2x21x+2

Mar 22, 2018

Partial fraction : (4x+4)/(x^2(x+2))= 1/x+2/x^2-1/(x+2)4x+4x2(x+2)=1x+2x21x+2

Explanation:

Let (4x+4)/(x^2(x+2))= A/x+B/x^2+C/(x+2)4x+4x2(x+2)=Ax+Bx2+Cx+2 or

(4x+4)/(x^2(x+2))=(Ax(x+2)+B(x+2)+Cx^2)/(x^2(x+2))4x+4x2(x+2)=Ax(x+2)+B(x+2)+Cx2x2(x+2) or

Ax(x+2)+B(x+2)+Cx^2=4x+4Ax(x+2)+B(x+2)+Cx2=4x+4 or

x^2(A+C)+x(2A+B)+2B=4x+4x2(A+C)+x(2A+B)+2B=4x+4

Equating the co-efficient of x^2x2 in both sides we get, A+C=0A+C=0

Equating the co-efficient of xx in both sides we get, 2A+B=42A+B=4

Equating constant term in both sides we get, 2B=4or B=22B=4orB=2

B=2 :. 2A+2=4 :. 2A = 2 :. A=1; A+C=0

:. C=-A :. C= -1 Hence partial fraction is

(4x+4)/(x^2(x+2))= 1/x+2/x^2-1/(x+2) [Ans]