How do you write the partial fraction decomposition of the rational expression (6x+5) / (x+2) ^46x+5(x+2)4?

1 Answer
May 27, 2017

Start with:

(6x+5)/(x+2)^4 = A/(x+2)^4 + B/(x+2)^3+C/(x+2)^2+D/(x+2)6x+5(x+2)4=A(x+2)4+B(x+2)3+C(x+2)2+Dx+2

Multiply both sides by (x+2)^4(x+2)4:

6x+5 = A + B(x+2)+C(x+2)^2+D(x+2)^36x+5=A+B(x+2)+C(x+2)2+D(x+2)3

Let x = -2

6(-2)+5 = A6(2)+5=A

A = -7A=7

Add 7 to both sides of equation:

6x+12 = B(x+2)+C(x+2)^2+D(x+2)^36x+12=B(x+2)+C(x+2)2+D(x+2)3

Let x = 0:

[ (2,4,8,|,12), ][(2,4,8,,12),]

Let x = -1

[ (2,4,8,|,12), (1,1,1,|,6) ]

Let x = 1

[ (2,4,8,|,12), (1,1,1,|,6), (3,9,27,|,18) ]

R_1harrR_2

[ (1,1,1,|,6), (2,4,8,|,12), (3,9,27,|,18) ]

R_2-2R_1toR_2

[ (1,1,1,|,6), (0,2,6,|,0), (3,9,27,|,18) ]

R_3-3R_1toR_3

[ (1,1,1,|,6), (0,2,6,|,0), (0,6,24,|,0) ]

R_2/2toR_2

[ (1,1,1,|,6), (0,1,3,|,0), (0,6,24,|,0) ]

R_3/6toR_3

[ (1,1,1,|,6), (0,1,3,|,0), (0,1,4,|,0) ]

R_3-R_3toR_3

[ (1,1,1,|,6), (0,1,3,|,0), (0,0,1,|,0) ]

It is obvious that C and D are 0 so we can clear the matrix:

[ (1,0,0,|,6), (0,1,0,|,0), (0,0,1,|,0) ]

B = 6 and C = D = 0

(6x+5)/(x+2)^4 = -7/(x+2)^4 + 6/(x+2)^3