How do you write the partial fraction decomposition of the rational expression (8x^2 - 4x - 8)/(x^4 + 2x^3)?

1 Answer
Feb 2, 2018

(8x^2 - 4x - 8)/(x^3(x+ 2))=-4/(x+2)+4/x-4/x^3

Explanation:

We have: (8x^2 - 4x - 8)/(x^4 + 2x^3)=(8x^2 - 4x - 8)/(x^3(x+ 2))

(8x^2 - 4x - 8)/(x^3(x+ 2))=A/(x+2)+B/x+C/x^2+D/x^3

color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=(Ax+B(x+2))/(x(x+2))+C/x^2+D/x^3

color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=(Ax^2+Bx(x+2)+C(x+2))/(x^2(x+2))+D/x^3

color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=(Ax^3+Bx^2(x+2)+Cx(x+2)+D(x+2))/(x^3(x+2))

8x^2 - 4x - 8=Ax^3+Bx^2(x+2)+Cx(x+2)+D(x+2)

Putting in x=0 gives us:
-8=D(2)
D=-4

8x^2 - 4x - 8=Ax^3+Bx^2(x+2)+Cx(x+2)-4(x+2)

Now putting in x=-2 gives us:
8(-2)^2 - 4(-2) - 8=A(-2)^3+B(-2)^2(-2+2)+C(-2)(-2+2)-4(-2+2)
32=-8A
A=-4

8x^2 - 4x - 8=-4x^3+Bx^2(x+2)+Cx(x+2)-4(x+2)

There are no numbers that can give us just B or C, so we must find one in terms of the other, and so we shall put in x=1 to get:
-4=-4+3B+3C-12
12=3(B+C)
B=4-C (we'll shall put this back in the original equation to help find C.

8x^2 - 4x - 8=-4x^3+(4-C)x^2(x+2)+Cx(x+2)-4(x+2)

We need to put in a random value, i.e. x=2

8(2)^2 - 4(2)- 8=-4(2)^3+(4-C)(2)^2((2)+2)+C(2)((2)+2)-4((2)+2)

16=8c+16(4-C)-48

64=16(4-C)

4=4-C

C=0

Remember that B=4-C

B=4-0=4

(8x^2 - 4x - 8)/(x^3(x+ 2))=-4/(x+2)+4/x+0/x^2-4/x^3

color(white)((8x^2 - 4x - 8)/(x^3(x+ 2)))=-4/(x+2)+4/x-4/x^3