How do you write the partial fraction decomposition of the rational expression (9x^2 + 1)/(x^2(x − 2)^2)9x2+1x2(x2)2?

1 Answer
Aug 11, 2018

(9x^2+1)/(x^2(x-2)^2) = 1/(4x)+1/(4x^2)-1/(4(x-2))+37/(4(x-2)^2)9x2+1x2(x2)2=14x+14x214(x2)+374(x2)2

Explanation:

Given that we have squared linear factors in the denominator, the decomposition will take a form like:

(9x^2+1)/(x^2(x-2)^2) = A/x+B/x^2+C/(x-2)+D/(x-2)^29x2+1x2(x2)2=Ax+Bx2+Cx2+D(x2)2

Multiplying both sides by x^2(x-2)^2x2(x2)2 this becomes:

9x^2+1 = Ax(x-2)^2+B(x-2)^2+Cx^2(x-2)+Dx^29x2+1=Ax(x2)2+B(x2)2+Cx2(x2)+Dx2

Putting x=0x=0 we get:

1 = 4B" "1=4B so " "B = 1/4 B=14

Putting x=2x=2 we get:

37 = 4D" "37=4D so " "D=37/4 D=374

Looking at the coefficient of xx, we have:

0 = 4A-4B = 4A-1" "0=4A4B=4A1 and hence A=1/4A=14

Looking at the coefficient of x^3x3, we have:

0 = A+C" "0=A+C and hence C=-A=-1/4C=A=14

So:

(9x^2+1)/(x^2(x-2)^2) = 1/(4x)+1/(4x^2)-1/(4(x-2))+37/(4(x-2)^2)9x2+1x2(x2)2=14x+14x214(x2)+374(x2)2