How do you write the partial fraction decomposition of the rational expression (x^4+1)/(x^5+6 x^3)x4+1x5+6x3?

1 Answer
Oct 11, 2016

(x^4+1)/(x^5+6 x^3)=1/(6 x^3) - 1/(36 x) + 37/(72 ( x-i sqrt[6] )) + 37/( 72 (x+i sqrt[6]))x4+1x5+6x3=16x3136x+3772(xi6)+3772(x+i6)

Explanation:

The proposition
(x^4+1)/(x^5+6 x^3)=(x^4+1)/(x^3(x^2+6))=c_1/x+c_2/x^2+c_3/x^3+c_4/(x+i sqrt(6))+c_5/(x-i sqrt(6))x4+1x5+6x3=x4+1x3(x2+6)=c1x+c2x2+c3x3+c4x+i6+c5xi6
The c_kck can be determined according to some techniques. The most elementar is

1) Performing the fractions addition
(x^4+1)/(x^5+6 x^3) =(1 - 6 c_3 -6 c_2x -(6 c_1 + c_3)x^2+ (i sqrt[6] c_4 - i sqrt[6] c_5-c_2)x^3+(1 - c_1 - c_4 - c_5)x^4)/(x^3 (6 + x^2))x4+1x5+6x3=16c36c2x(6c1+c3)x2+(i6c4i6c5c2)x3+(1c1c4c5)x4x3(6+x2)

2) Choosing c_kck such that
x^4+1= (1 - 6 c_3 -6 c_2x -(6 c_1 + c_3)x^2+ (i sqrt[6] c_4 - i sqrt[6] c_5-c_2)x^3+(1 - c_1 - c_4 - c_5)x^4), forall x in RR

3) Solving the conditions

{(1 - 6 c_3=0), (-6 c_2=0), (6 c_1 + c_3=0), (-c_2 + i sqrt[6] c_4 - i sqrt[6] c_5=0), (1 - c_1 - c_4 - c_5=0):}

obtaining

c_1 = -1/36, c_2 = 0, c_3 = 1/6, c_4 = 37/72, c_5 = 37/72

(x^4+1)/(x^5+6 x^3)=1/(6 x^3) - 1/(36 x) + 37/(72 ( x-i sqrt[6] )) + 37/( 72 (x+i sqrt[6]))

Note. We can avoid the complex expansion doing

(c'_3x+c'_4)/(x^2+6) instead of c_4/(x+i sqrt(6))+c_5/(x-i sqrt(6))