How do you write the partial fraction decomposition of the rational expression (x^2+9)/(x^4-2x^2-8)x2+9x42x28?

1 Answer
Dec 18, 2015

-13/(24(x+2))+13/(24(x-2))-7/(6(x^2+2))1324(x+2)+1324(x2)76(x2+2)

Explanation:

Factor the denominator.

x^4-2x^2-8=(x^2-4)(x^2+2)=(x+2)(x-2)(x^2+2)x42x28=(x24)(x2+2)=(x+2)(x2)(x2+2)

(x^2+9)/((x+2)(x-2)(x^2+2))=A/(x+2)+B/(x-2)+(Cx+D)/(x^2+2)x2+9(x+2)(x2)(x2+2)=Ax+2+Bx2+Cx+Dx2+2

Find a common denominator of (x+2)(x-2)(x^2+2)(x+2)(x2)(x2+2).

x^2+9=A(x-2)(x^2+2)+B(x+2)(x^2+2)+(Cx+D)(x^2-4)x2+9=A(x2)(x2+2)+B(x+2)(x2+2)+(Cx+D)(x24)

x^2+9=Ax^3-2Ax^2+2Ax-4A+Bx^3+2Bx^2+2Bx+4B+Cx^3-4Cx+Dx^2-4Dx2+9=Ax32Ax2+2Ax4A+Bx3+2Bx2+2Bx+4B+Cx34Cx+Dx24D

x^2+9=x^3(A+B+C)+x^2(-2A+2B+D)+x(2A+2B+4C)+1(-4A+4B-4D)x2+9=x3(A+B+C)+x2(2A+2B+D)+x(2A+2B+4C)+1(4A+4B4D)

From this, write the following system:
{(A+B+C=0),(-2A+2B+D=1),(2A+2B+4C=0),(-4A+4B-4D=9):}

Solve the system:
{(A=-13/24),(B=13/24),(C=0),(D=-7/6):}

This gives:

(x^2+9)/(x^4-2x^2-8)=-13/(24(x+2))+13/(24(x-2))-7/(6(x^2+2))