(x^4+6)/(x^5+7x^3)=(x^4+6)/((x^3)(x^2+7))x4+6x5+7x3=x4+6(x3)(x2+7)
Let's do the decompositiom in partial fractions
(x^4+6)/((x^3)(x^2+7))=A/x+B/x^2+C/x^3+(Dx+E)/(x^2+7)x4+6(x3)(x2+7)=Ax+Bx2+Cx3+Dx+Ex2+7
=(Ax^2(x^2+7)+Bx(x^2+7)+C(x^2+7)+x^3(Dx+E))/((x^3)(x^2+7))=Ax2(x2+7)+Bx(x2+7)+C(x2+7)+x3(Dx+E)(x3)(x2+7)
Therefore,
x^4+6=Ax^2(x^2+7)+Bx(x^2+7)+C(x^2+7)+x^3(Dx+E)x4+6=Ax2(x2+7)+Bx(x2+7)+C(x2+7)+x3(Dx+E)
Let x=0x=0=>⇒ 6=7C6=7C =>⇒ C=6/7C=67
Coefficients of x^2x2, =>⇒ 0=7A+C0=7A+C ; A=-6/49A=−649
coefficients of x^4x4 ; =>⇒ ; 1=A+D1=A+D ; D=1+6/49=55/49D=1+649=5549
Coefficients of x^3x3 ; =>⇒ ; 0=B+E0=B+E
Coefficients of xx ; =>⇒ ; 0=7B0=7B =>⇒ B=0B=0
E=0E=0
(x^4+6)/((x^3)(x^2+7))=(-6/49)/x+0/x^2+(6/7)/x^3+(55/49x+0)/(x^2+7)x4+6(x3)(x2+7)=−649x+0x2+67x3+5549x+0x2+7