How do you write the partial fraction decomposition of the rational expression ( x-2 ) / (x^2 + 4x + 3)x2x2+4x+3?

1 Answer
Dec 16, 2015

5/(2(x+3))-3/(2(x+1))52(x+3)32(x+1)

Explanation:

Factor the denominator.

(x-2)/((x+1)(x+3))=A/(x+1)+B/(x+3)x2(x+1)(x+3)=Ax+1+Bx+3

x-2=A(x+3)+B(x+1)x2=A(x+3)+B(x+1)

If x=-3x=3:

-3-2=B(-2)32=B(2)
B=5/2B=52

If x=-1x=1:

-1-2=A(2)12=A(2)
A=-3/2A=32

Plug the values back in.

(x-2)/(x^2+4x+3)=5/(2(x+3))-3/(2(x+1))x2x2+4x+3=52(x+3)32(x+1)