How do you write the partial fraction decomposition of the rational expression (x^2 -111)/ (x^4- x^2- 72)?

1 Answer
Dec 15, 2015

20/(17(x-3))-20/(17(x+3))-103/(17(x^2+8)

Explanation:

Factor the denominator.

x^4-x^2-72=(x^2-9)(x^2+8)=(x+3)(x-3)(x^2+8)

Write the partial fraction decomposition expression.

(x^2-111)/((x+3)(x-3)(x^2+8))=A/(x+3)+B/(x-3)+(Cx+D)/(x^2+8)

x^2-111=A(x-3)(x^2+8)+B(x+3)(x^2+8)+(Cx+D)(x^2-9)

x^2-111=A(x^3-3x^2+8x-24)+B(x^3+3x^2+8x+24)+Cx^3-9Cx+Dx^2-9D

x^2-111=x^3(A+B+C)+x^2(-3A+3B+D)+x(8A+8B-9C)+1(-24A+24B-9D)

The following system can be deduced:

{(A+B+C=0),(-3A+3B+D=1),(8A+8B-9C=0),(-24A+24B-9D=111):}

Solve the system:

{(A=-20/17),(B=20/17),(C=0),(D=-103/17):}

Plug in these values:

(x^2 -111)/ (x^4- x^2- 72)=20/(17(x-3))-20/(17(x+3))-103/(17(x^2+8)