(x^2 + 1)/(x(x + 1)(x^2 + 2))=A/x+B/(x+1)+(Cx+D)/(x^2+2)x2+1x(x+1)(x2+2)=Ax+Bx+1+Cx+Dx2+2
x^2+1=A(x+1)(x^2+2)+B(x)(x^2+2)+(Cx+D)(x)(x+1)x2+1=A(x+1)(x2+2)+B(x)(x2+2)+(Cx+D)(x)(x+1)
x^2+1=Ax^3+Ax^2+2Ax+2A+Bx^3+2Bx+Cx^3+Cx^2+Dx^2+Dxx2+1=Ax3+Ax2+2Ax+2A+Bx3+2Bx+Cx3+Cx2+Dx2+Dx
x^2+1=x^3(A+B+C)+x^2(A+C+D)+x(2A+2B+D)+1(2A)x2+1=x3(A+B+C)+x2(A+C+D)+x(2A+2B+D)+1(2A)
Thus, {(A+B+C=0),(A+C+D=1),(2A+2B+D=0),(2A=1):}
Solve this to see that {(A=1/2),(B=-2/3),(C=1/6),(D=1/3):}
Therefore,
(x^2 + 1)/(x(x + 1)(x^2 + 2))=1/(2x)-2/(3(x+1))+(x+2)/(6(x^2+2))