How do you write the partial fraction decomposition of the rational expression (x^3 - 6x^2 + 11x - 6) / (4x^3 - 28x^2 + 56x - 32) ?

1 Answer
Mar 21, 2016

(x^3-6x^2+11x-6)/(4x^3-28x^2+56x-32)=1/4+1/(4(x-4))

with exclusions x != 1 and x != 2

Explanation:

Let us factor the numerator and denominator first:

x^3-6x^2+11x-6

=(x-1)(x^2-5x+6)

=(x-1)(x-2)(x-3)

color(white)()

4x^3-28x^2+56x-32

=4(x^3-7x^2+14x-8)

=4(x-1)(x^2-6x+8)

=4(x-1)(x-2)(x-4)

So:

(x^3-6x^2+11x-6)/(4x^3-28x^2+56x-32)

=(color(red)(cancel(color(black)((x-1))))color(red)(cancel(color(black)((x-2))))(x-3))/(4color(red)(cancel(color(black)((x-1))))color(red)(cancel(color(black)((x-2))))(x-4))

=(x-3)/(4(x-4))

=(x-4+1)/(4(x-4))

=1/4+1/(4(x-4))

with exclusions x != 1 and x != 2