How do you write the partial fraction decomposition of the rational expression (x+10)/(x^2+2x-8)x+10x2+2x8?

1 Answer
Dec 9, 2015

The equivalent partial fraction is :
(-1)/(x+4) + 2/(x-2)1x+4+2x2

Explanation:

Given (x+10)/(x^2 +2x-8)x+10x2+2x8

Step 1: Factor the denominator

(x+10)/((x+4)(x-2)x+10(x+4)(x2)

Step 2: Set up the partial faction as follows:

(x+10)/((x+4)(x-2)) = A/(x+4) + B/(x-2) " " " " " (1)x+10(x+4)(x2)=Ax+4+Bx2 (1)

Step 3: Multiply both sides by the LCD, (x+4)(x-2)(x+4)(x2):

(x+10) = A(x-2) +B(x+4)(x+10)=A(x2)+B(x+4)
x+ 10 = Ax - 2A + Bx+ 4Bx+10=Ax2A+Bx+4B

Step 4: Set up a system like this
1x: " " " " A+ B= 1 " " " "(2) 1x: A+B=1 (2)
10: " " " -2A+4B= 10 " " " "(3) 10: -2A+4B= 10 (3)

Step 5. You can solve the system by the elimination method:

2(A+B= 1) => 2A + 2B= 22(A+B=1)2A+2B=2

+ -2A + 4B= 10 +2A+4B=10
6B = 12 => B= 26B=12B=2

Solve for AA by substituting B = 3B=3 into (2)(2):

A+(2) = 1A+(2)=1
A = -1A=1

Step 6. Substitute AA and BB back into (1)(1):

(x+10)/((x+4)(x-2))= (-1)/(x+4) + 2/(x-2)x+10(x+4)(x2)=1x+4+2x2