How do you write the partial fraction decomposition of the rational expression x/ (x^3-2x+x)?

1 Answer
Dec 14, 2015

1/(2(x-1))-1/(2(x+1))

Explanation:

Simplify: x/(x^3-x)

Factor the denominator.

x/(x(x+1)(x-1))=A/x+B/(x+1)+C/(x-1)

x=A(x^2-1)+B(x^2-x)+C(x^2+x)

If x=0:

0=-A
A=0

If x=1:

1=2C
C=1/2

If x=-1:

-1=2B
B=-1/2

Therefore, the expression is equal to

1/(2(x-1))-1/(2(x+1))