How do you write the partial fraction decomposition of the rational expression (x^2 + 5x - 7 )/( x^2 (x+ 1)^2)?

1 Answer
Oct 23, 2016

The decomposition is

(x^2+5x-7)/(x^2(x+1)^2)=-7/x^2+19/x-19/(x+1)-11/(x+1)^2

Explanation:

Let A,B,C,D be constants
The fraction decomposition of the rational expression

(x^2+5x-7)/(x^2(x+1)^2)=A/x^2+B/x+C/(x+1)+D/(x+1)^2

=(A(x+1)^2+Bx(x+1)^2+Cx^2(x+1)+Dx^2)/(x^2(x+1)^2)

So x^2+5x-7=A(x+1)^2+Bx(x+1)^2+Cx^2(x+1)+Dx^2

let x=0, then -7=A

let x=-1 then -11=D

Comparing coefficients of x

5=2A+B so B=5-2A=5+14=19
Comparing the coefficients of x^2
1=A+2B+C+D so C=1-A-2B-D=1+7-38+11=-19

so the final result is
(x^2+5x-7)/(x^2(x+1)^2)=-7/x^2+19/x-19/(x+1)-11/(x+1)^2