How do you write the partial fraction decomposition of the rational expression x/((x-1)(x^2+4)x(x1)(x2+4)?

1 Answer
Nov 11, 2016

The answer is =(1/5)/(x-1)+(-1/5x+4/5)/(x^2+4)=15x1+15x+45x2+4

Explanation:

Let's write the decomposition
x/((x-1)(x^2+4))=A/(x-1)+(Bx+C)/(x^2+4)x(x1)(x2+4)=Ax1+Bx+Cx2+4

=(A(x^2+4)+(Bx+C)(x-1))/((x-1)(x^2+4))=A(x2+4)+(Bx+C)(x1)(x1)(x2+4)

:. x=A(x^2+4)+(Bx+C)(x-1)

Let x=1=>1=5A=>A=1/5
Coefficients of x^2=>0=A+B=> B=-1/5
And 0=4A-C=>C=4/5

So, x/((x-1)(x^2+4))=(1/5)/(x-1)+(-1/5x+4/5)/(x^2+4)