How do you write the partial fraction decomposition of the rational expression (x^2 + 4)/ ((x^2 - 4)(x^2 +2))x2+4(x24)(x2+2)?

1 Answer
Dec 14, 2015

1/(3(x-2))-1/(3(x+2))-1/(3(x^2+2))13(x2)13(x+2)13(x2+2)

Explanation:

Factor the denominator.

(x^2+4)/((x+2)(x-2)(x^2+2))=A/(x+2)+B/(x-2)+(Cx+D)/(x^2+2)x2+4(x+2)(x2)(x2+2)=Ax+2+Bx2+Cx+Dx2+2

x^2+4=A(x-2)(x^2+2)+B(x+2)(x^2+2)+(Cx+D)(x^2-4)x2+4=A(x2)(x2+2)+B(x+2)(x2+2)+(Cx+D)(x24)

If x=-2x=2:

8=-24A8=24A
A=-1/3A=13

If x=2x=2:

8=24B8=24B
B=1/3B=13

If x=0x=0:

4=-4A+4B-4D4=4A+4B4D
1=-A+B-D1=A+BD

Plug in AA and BB to see that D=-1/3D=13.

If x=1x=1:

5=-3A+9B-3C-3D5=3A+9B3C3D

Plug in all the known values to find that C=0C=0.

Plug these all back in to see that the expression decomposes into

1/(3(x-2))-1/(3(x+2))-1/(3(x^2+2))13(x2)13(x+2)13(x2+2)