How do you write the partial fraction decomposition of the rational expression (x^2)/(x+1)^3x2(x+1)3?

1 Answer
Mar 29, 2017

x^2/(x+1)^3 = 1/(x+1)-2/(x+1)^2+1/(x+1)^3x2(x+1)3=1x+12(x+1)2+1(x+1)3

Explanation:

x^2/(x+1)^3 = A/(x+1)+B/(x+1)^2+C/(x+1)^3x2(x+1)3=Ax+1+B(x+1)2+C(x+1)3

color(white)(x^2/(x+1)^3) = (A(x+1)^2+B(x+1)+C)/(x+1)^3x2(x+1)3=A(x+1)2+B(x+1)+C(x+1)3

color(white)(x^2/(x+1)^3) = (A(x^2+2x+1)+B(x+1)+C)/(x+1)^3x2(x+1)3=A(x2+2x+1)+B(x+1)+C(x+1)3

color(white)(x^2/(x+1)^3) = (Ax^2+(2A+B)x+(A+B+C))/(x+1)^3x2(x+1)3=Ax2+(2A+B)x+(A+B+C)(x+1)3

Equating coefficients we have:

{ (A=1), (2A+B=0), (A+B+C=0) :}

Hence:

{ (A=1), (B=-2), (C=1) :}

So:

x^2/(x+1)^3 = 1/(x+1)-2/(x+1)^2+1/(x+1)^3