How do you write the trigonometric form in complex form 6(cos((5pi)/6)+isin((5pi)/6)))6(cos(5π6)+isin(5π6)))?

1 Answer

THe complex form is -3sqrt3+3i33+3i

Explanation:

The trigonometric form is z=r(costheta+isintheta)z=r(cosθ+isinθ)
The complex form is z=a+ibz=a+ib
so we have to put the values of costhetacosθ and sinthetasinθ
cos((5pi)/6)=-cos( pi/6)=-sqrt3/2cos(5π6)=cos(π6)=32
and sin((5pi)/6)=sin(pi/6)=1/2sin(5π6)=sin(π6)=12

So we have z=6((-sqrt3/2)+i/2)=-3sqrt3+3iz=6((32)+i2)=33+3i