How do you write the trigonometric form into a complex number in standard form 1/4(cos225+isin225)?

1 Answer
Aug 17, 2016

-sqrt2/8-sqrt2/8 i

Explanation:

Firstly, consider the trig part inside the bracket.

Now 225^@ is an angle in the 3rd quadrant where both the sin and cos ratios are color(blue)"negative"

color(orange)"Reminder"

color(red)(|bar(ul(color(white)(a/a)color(black)(cos225^@=-cos(225-180)^@=-cos45^@)color(white)(a/a)|)))

and color(red)(|bar(ul(color(white)(a/a)color(black)(sin225^@=-sin(225-180)^@=-sin45^@)color(white)(a/a)|)))

also color(red)(|bar(ul(color(white)(a/a)color(black)(sin45^@=cos45^@=1/sqrt2)color(white)(a/a)|)))

rArrcos225^@+isin225^@=-1/sqrt2-1/sqrt2 i

so now back to the original expression.

1/4(cos225^@+isin225^@)=1/4(-1/sqrt2-1/sqrt2 i)

distributing gives.

-1/(4sqrt2)-1/(4sqrt2) i=-sqrt2/8-sqrt2/8 i" in standard form"