How do you write the trigonometric form into a complex number in standard form 1/4(cos225+isin225)?
1 Answer
Aug 17, 2016
Explanation:
Firstly, consider the trig part inside the bracket.
Now
225^@ is an angle in the 3rd quadrant where both the sin and cos ratios arecolor(blue)"negative"
color(orange)"Reminder"
color(red)(|bar(ul(color(white)(a/a)color(black)(cos225^@=-cos(225-180)^@=-cos45^@)color(white)(a/a)|))) and
color(red)(|bar(ul(color(white)(a/a)color(black)(sin225^@=-sin(225-180)^@=-sin45^@)color(white)(a/a)|))) also
color(red)(|bar(ul(color(white)(a/a)color(black)(sin45^@=cos45^@=1/sqrt2)color(white)(a/a)|)))
rArrcos225^@+isin225^@=-1/sqrt2-1/sqrt2 i so now back to the original expression.
1/4(cos225^@+isin225^@)=1/4(-1/sqrt2-1/sqrt2 i) distributing gives.