To convert from trig form to standard form, simply compute the trig functions' values and expand the multiplication.
First, let's find the #sin# and #cos# of #(5pi)/12# using the respective angle-sum identities:
#sin(A+B)=sinAcosB+cosAsinB#
#cos(A+B)=cosAcosB-sinAsinB#
We can figure out that #(5pi)/12# is the sum of #pi/6# and #pi/4#:
#color(white)=pi/6+pi/4#
#=(2pi)/12+pi/4#
#=(2pi)/12+(3pi)/12#
#=(2pi+3pi)/12#
#=(5pi)/12#
Now we can use those angle sum formulae.
Here is a unit circle to remind us of some trig values:
Here's computing #sin((5pi)/12)#:
#color(white)=sin((5pi)/12)#
#=sin((2pi)/12+(3pi)/12)#
#=sin(pi/6+pi/4)#
#=sin(pi/6)cos(pi/4)+cos(pi/6)sin(pi/4)#
#=1/2*sqrt2/2+sqrt3/2*sqrt2/2#
#=sqrt2/4+sqrt6/4#
#=(sqrt6+sqrt2)/4#
Here's computing #cos((5pi)/12)#:
#color(white)=cos((5pi)/12)#
#=cos((2pi)/12+(3pi)/12)#
#=cos(pi/6+pi/4)#
#=cos(pi/6)cos(pi/4)-sin(pi/6)sin(pi/4)#
#=sqrt3/2*sqrt2/2-1/2*sqrt2/2#
#=sqrt6/4-sqrt2/4#
#=(sqrt6-sqrt2)/4#
Now we can plug in the values to the trig form of the complex number:
#color(white)=6(cos((5pi)/12)+isin((5pi)/12))#
#=6((sqrt6-sqrt2)/4+i*(sqrt6+sqrt2)/4)#
#=6*(sqrt6-sqrt2)/4+6*i*(sqrt6+sqrt2)/4#
#=3*(sqrt6-sqrt2)/2+3*i*(sqrt6+sqrt2)/2#
#=(3sqrt6-3sqrt2)/2+(3sqrt6+3sqrt2)/2i#
That's it. Hope this helped!