How do you write the trigonometric form of -3-i?

1 Answer
Aug 1, 2017

The trigonometric form is =sqrt10(cos198.4^@+isin198.4^@)

Explanation:

Let z=-3-i

The trigonometris form is

z=r(costheta+isintheta)

If z=a+ib

z=|z|(a/|z|+b/|z|i)

The modulus is

|z|=sqrt(a^2+b^2)=sqrt((-3)^2+(-1)^2)=sqrt10

Therefore,

z=sqrt10(-3/sqrt10-1/sqrt10i)

costheta=-3/sqrt10

and

sintheta=-1/sqrt10

We are in the quadrant III

theta=198.4^@

Therefore,

z=sqrt10(cos198.4^@+isin198.4^@)=e^(i198.4^@)