Let f(x)= 3x^3+6x-8÷x(x^2+2) (i) Express f(x) in the form (A)+(B÷x)+(Cx+D÷x^2+2). (ii) show the integral 2 to 1 f(x) dx=3-ln4 Can someone please solve this question?

1 Answer
Jan 28, 2018

Please see below.

Explanation:

As f(x)=(3x^3+6x-8)/(x(x^2+2))=(3x^3+6x-8)/(x^3+2x)

= 3-8/(x^3+2x)=3-8/(x(x^2+2x)

Here we have divided 3x^3+6x-8 by x^2+2x, which leads to A=3

Let 8/(x(x^2+2x))=B/x+(Cx+D)/(x^2+2)

then 8=B(x^2+2)+x(Cx+D)

Comparing coeeficients of like powers, we get

2B=8 i.e. B=4
B+C=0 i.e. C=-4
D=0

Hence f(x)=(3x^3+6x-8)/(x(x^2+2))=3-4/x+(4x)/(x^2+2)

and I=int_1^2(3x^3+6x-8)/(x(x^2+2))dx

= int_1^2(3-4/x+(4x)/(x^2+2))dx

= 3int_1^2dx-4int_1^2(dx)/x+2int_1^2(2x)/(x^2+2)dx

= [3x-4lnx]_1^2+2int_1^2(2x)/(x^2+2)dx

For int_1^2(2x)/(x^2+2)dx, let u=x^2+2, then du=2xdx

and int_1^2(2x)/(x^2+2)dx=int_3^6(du)/u=[ln6-ln3]

Hence I=[3x-4lnx]_1^2+2[ln6-ln3]

= 6-4ln2-3+2ln2

= 3-2ln2

= 3-ln4