Let S={v1=(2,2,3), v2=(-1,-2,1), v3=(0,1,0)}. Find a condition on a,b, and c so that v=(a,b,c) is a linear combination of v1,v2 and v3?

1 Answer
Dec 17, 2016

See below.

Explanation:

v_1,v_2 and v_3 span RR^3 because

det({v_1,v_2,v_3})=-5 ne 0

so, any vector v in RR^3 can be generated as a linear combination of v_1,v_2 and v_3

The condition is

((a),(b),(c))= lambda_1 ((2),(2),(3))+lambda_2((-1),(-2),(1))+lambda_3((0),(1),(0)) equivalent to the linear system

((2,-1,0),(2,-2,1),(3,1,0))((lambda_1),(lambda_2),(lambda_3))=((a),(b),(c))

Solving for lambda_1,lambda_2,lambda_3 we will have the v components in the reference v_1,v_2,v_2