Let V and W be the subspace of RR^2 spanned by (1,1) and (1,2),respectively. Find vectors v ∈ V and w ∈ W so v + w = (2,−1)?

1 Answer
Mar 12, 2018

See below

Explanation:

If vecv in V then vecv=lambda(1,1)=(lambda,lambda)

If vecw in W then vecw=rho(1,2)=(rho,2rho)

lambda, rho in RR

Then vecv+vecw=(lambda+rho,lambda+2rho)=(2,-1) Thus we have

lambda+rho=2
lambda+2rho=-1

The only solution is lambda=5 and rho=-3

Our vectors are vecv=(5,5) and vecw=(-3,-6)