If we have two complex numbers z_1=r_1(cosalpha+isinalpha) and z_2=r_2(cosbeta+isinbeta)
z_1xxz_2=r_1r_2(cosalphacosbeta+icosalphasinbeta+isinalphacosbeta+i^2sinalphasinbeta)
or
z_1xxz_2=r_1r_2((cosalphacosbeta-sinalphasinbeta)+i(cosalphasinbeta+sinalphacosbeta)
or
z_1xxz_2=r_1r_2(cos(alpha+beta)+isin(alpha+beta))
Here we have z_1=2(cos((5pi)/6)+isin((5pi)/6)) and z_2=5(cos(pi/3)+isin(pi/3)
and z_1xxz_2=2xx5(cos((5pi)/6+pi/3)+isin((5pi)/6+pi/3))
= 10(cos((7pi)/6)+isin((7pi)/6))
= 10(cos(pi+pi/6)+isin(pi+pi/6))
= 10(-cos(pi/6)-isin(pi/6))
= -10(sqrt3/2+i/2)
= -5sqrt3-5i