Let z1 = 2(cos 5pi/6 + i sin 5pi/6) and z2 = 5(cos pi/3 + i sin pi/3), how do you find z1z2?

1 Answer
Nov 25, 2016

z_1xxz_2=-5sqrt3-5i

Explanation:

If we have two complex numbers z_1=r_1(cosalpha+isinalpha) and z_2=r_2(cosbeta+isinbeta)

z_1xxz_2=r_1r_2(cosalphacosbeta+icosalphasinbeta+isinalphacosbeta+i^2sinalphasinbeta)

or
z_1xxz_2=r_1r_2((cosalphacosbeta-sinalphasinbeta)+i(cosalphasinbeta+sinalphacosbeta)

or
z_1xxz_2=r_1r_2(cos(alpha+beta)+isin(alpha+beta))

Here we have z_1=2(cos((5pi)/6)+isin((5pi)/6)) and z_2=5(cos(pi/3)+isin(pi/3)

and z_1xxz_2=2xx5(cos((5pi)/6+pi/3)+isin((5pi)/6+pi/3))

= 10(cos((7pi)/6)+isin((7pi)/6))

= 10(cos(pi+pi/6)+isin(pi+pi/6))

= 10(-cos(pi/6)-isin(pi/6))

= -10(sqrt3/2+i/2)

= -5sqrt3-5i