State De Moivre's theorem and prove it for all integer values?

3 Answers
May 3, 2018

(cos theta + i sin theta)^n = cosn theta + isinntheta (cosθ+isinθ)n=cosnθ+isinnθ

Proof by induction

Explanation:

(cos theta + i sin theta)^n = cosn theta + isinntheta (cosθ+isinθ)n=cosnθ+isinnθ

Prove by induction:

Basis case: n = 1 n=1

=> ( cos theta + isin theta)^1 = cos theta + i sin theta (cosθ+isinθ)1=cosθ+isinθ

Hence basis case holds

Asume true for n=k n=k

(cos theta + i sin theta)^k = cosk theta + isinktheta (cosθ+isinθ)k=coskθ+isinkθ

Showing holds for n = k+1n=k+1

(cos theta + i sin theta)^(k+1) = (cosk theta + isinktheta)(cos theta + isin theta) (cosθ+isinθ)k+1=(coskθ+isinkθ)(cosθ+isinθ)

(cos theta + i sin theta)^(k+1) = (cosθ+isinθ)k+1=

= costheta cosk theta + isinthetacosktheta + isinkthetacostheta - sinktheta sintheta =cosθcoskθ+isinθcoskθ+isinkθcosθsinkθsinθ

= costhetacosktheta - sinkthetasintheta + i ( sinthetacosktheta + sinktheta cos theta ) =cosθcoskθsinkθsinθ+i(sinθcoskθ+sinkθcosθ)

=> = cos ( (k+1) theta ) + i sin ( (k+1) theta) =cos((k+1)θ)+isin((k+1)θ)

Hence it holds true for k+1k+1

It holds for basis case n=1n=1 and n = k + 1 n=k+1 for all k k that holds, hence holds for n =1 n=1, n =2 n=2 , n=3n=3 etc...

=> "holds" AA n in ZZ

May 3, 2018

(cos theta+i sin theta)^n = cos(n theta) + isin(n theta) AA n in RR

Explanation:

De Moivre's Theorem, states that:

(cos theta+i sin theta)^n = cos(n theta) + isin(n theta) AA n in RR

We seek to validate this result for n in NN, which we can prove using Mathematical Induction:

Induction Proof - Hypothesis

We seek to prove that:

#

(cos theta+i sin theta)^n = cos(n theta) + isin(n theta) AA n in NN \ \ \ \ ..... [A]

So let us test this assertion, [A], using Mathematical Induction:

Induction Proof - Base case:

Consider, the special case n=1 in which case we have the trivial result:

(cos theta+i sin theta)^1 = cos(1 theta) + isin(1 theta)

So the given result is true when n=1.

Induction Proof - General Case

Now, Let us assume that the given result [A] is true when n=m, for some m in NN, m gt 1, in which case for this particular value of m we have:

(cos theta+i sin theta)^m = cos(m theta) + isin(m theta) \ \ \ ..... [B]

Then, consider the expression:

E = (cos theta+i sin theta)^(m+1)

\ \ \ = (cos theta+i sin theta)^m(cos theta+i sin theta)

\ \ \ = (cos(m theta) + isin(m theta))(cos theta+i sin theta) \ \ (using [B])

\ \ \ = cos(m theta)cos theta + isin(m theta)cos theta + cos(m theta)i sin theta + isin(m theta)i sin theta

\ \ \ = {cos(m theta)cos theta -sin(m theta) sin theta} + i{sin(m theta)cos theta + icos(m theta) sin theta }

\ \ \ = cos(m+1) theta + isin(m+1) theta

Which is the given result [A] with n=m+1

Induction Proof - Summary

So, we have shown that if the given result [A] is true for n=m, then it is also true for n=m+1. But we initially showed that the given result was true for n=1 so it must also be true for n=2, n=3, n=4, ... and so on.

Induction Proof - Conclusion

Then, by the process of mathematical induction the given result [A] is true for n in NN

Hence we have:

(cos theta+i sin theta)^n = cos(n theta) + isin(n theta) AA n in NN \ \ \ \ QED

May 3, 2018

See below.

Explanation:

First let us prove r[costheta+jsintheta]=re^[jtheta].

Let z=costheta+jsintheta...........[1], therefore, #dz/[d theta=-[sintheta-jcostheta]#

=j^2sintheta+jcostheta = j[costheta+jsintheta][ sincej^2=-1]

But j[cos theta+jsin theta]=z [ from .....[1], so dz/[d theta=jz.........[2]
Inverting both sides of .....[2], d theta/[dz=1/[jz and integrating w.r.t z

theta=1/jint1/zdz = 1/jlnz+c, but from .....[1] when theta =0,cos theta=1,sin theta=0, i.e., z=1

Therefore, theta=1/jln[1]+c, but ln [1] =0 to any base, therefore c=0.

So we have, theta=1/jlnz, i.e, jtheta=lnx, and so e^j theta=z [ theory of logs], therefore from ...[1], r[cos theta+jsin theta]=re^j theta.......[3]

[ Proof of De Moivres theorem, for any value of n]

From .....[3], cos theta+jsin theta=e^j theta [ omitting r].......[4]

Raising both sides of ....[3] to the power n, [cos theta+jsin theta]^n=e^[n j theta]

=e^[j[n theta]] , but e^[j[n theta]]= cosn theta+ jsin n theta , from .......[4], replacing theta by n theta,

Therefore , [cos theta+jsin theta]^n= cosn theta+jsin ntheta.