If #color(red)y# varies jointly with #color(blue)w# and #color(green)x# and inversely with #color(magenta)z#
then
#color(white)("XXX")(color(red)y * color(magenta)z)/(color(blue)w *color(green)x) = color(brown)k# for some constant #color(brown)k#
GIven
#color(white)("XXX")color(red)(y=360)#
#color(white)("XXX")color(blue)(w=8)#
#color(white)("XXX")color(green)(x=25)#
#color(white)("XXX")color(magenta)(z=5)#
#color(brown)k=(color(red)(360) * color(magenta)(5))/(color(blue)(8) * color(green)(25))#
#color(white)("XX")=(cancel(360)^45 * cancel(5))/(cancel(8) * cancel(25)_5#
#color(white)("XX")= color(brown)9#
So when
#color(white)("XXX")color(blue)(w=4)#
#color(white)("XXX")color(green)(x=4)# and
#color(white)("XXX")color(magenta)(z=3)#
#color(white)("XXX")(color(red)y * color(magenta)3)/(color(blue)4 * color(green)4) = color(brown)9#
#color(white)("XXX")color(red)y = (color(brown)9 * color(blue)4 * color(green)4)/color(magenta)3 = 48#