Suppose that y varies jointly with w and x and inversely with z and y=360 when w=8, x=25 and z=5. How do you write the equation that models the relationship. Then find y when w=4, x=4 and z=3?

1 Answer
Dec 15, 2016

#y =48# under the given conditions
(see below for the modelling)

Explanation:

If #color(red)y# varies jointly with #color(blue)w# and #color(green)x# and inversely with #color(magenta)z#
then
#color(white)("XXX")(color(red)y * color(magenta)z)/(color(blue)w *color(green)x) = color(brown)k# for some constant #color(brown)k#

GIven
#color(white)("XXX")color(red)(y=360)#
#color(white)("XXX")color(blue)(w=8)#
#color(white)("XXX")color(green)(x=25)#
#color(white)("XXX")color(magenta)(z=5)#

#color(brown)k=(color(red)(360) * color(magenta)(5))/(color(blue)(8) * color(green)(25))#

#color(white)("XX")=(cancel(360)^45 * cancel(5))/(cancel(8) * cancel(25)_5#

#color(white)("XX")= color(brown)9#

So when
#color(white)("XXX")color(blue)(w=4)#
#color(white)("XXX")color(green)(x=4)# and
#color(white)("XXX")color(magenta)(z=3)#

#color(white)("XXX")(color(red)y * color(magenta)3)/(color(blue)4 * color(green)4) = color(brown)9#

#color(white)("XXX")color(red)y = (color(brown)9 * color(blue)4 * color(green)4)/color(magenta)3 = 48#