For extrema, f'(x)=0.
f'(x)=(x-2)*3(x-5)^2+(x-5)^3*1=(x-5)^2{3x-6+x-5]=(4x-11)(x-5)^2.
f'(x)=0 rArr x=5!in [1,4], so no need for further cosideration & x=11/4.
f'(x)=(4x-11)(x-5)^2, rArr f''(x)=(4x-11)*2(x-5)+(x-5)^2*4=2(x-5){4x-11+2x-10}=2(x-5)(6x-21).
Now, f''(11/4)=2(11/4-5)(33/2-21)=2(-9/4)(-9/2)>0, showing that, f(11/4)=(11/4-2)(11/4-5)^3=(3/2)(-9/4)^3=-2187/128, is Local Minima.
To find Global Values, we need f(1)=(1-2)(1-5)^3=64, & f(4)=(4-2)(4-5)^3=-2.
Hence, Global Minima =min { local minima, f(1), f(4)}=min{-2187/128,64, -2}=min{-17.09, 64, -2}=-2187/128~=-17.09
Global Maxima =max { local maxima ( which doesn't exist), f(1), f(4)}=max{64, -2}=64.