What are the absolute extrema of f(x)= xe^(x^2)/128in [-5,16]f(x)=xex2128[5,16]?

1 Answer
Nov 9, 2016

f(16)=e^256/8 and f(0)=0f(16)=e2568andf(0)=0

Explanation:

f'=(1/128)(xe^(x^2))'=(1/128)((x)'e^(x^2)+(e^(x^2))'x)=(1/128)e^(x^2)(1+2x^2)

Here, e^(x^2)>=1 and 1+2x^2>=1. So, f'>=1>0#

And so, f is an increasing function in x in (-oo, oo)

As |f(-5)|=(5/128)e^25 < f(16) = e^256/8,

the absolute maximum =f(16)=e^256/8 and,

as |f| >= 0 and f(0) = 0,

the absolute minimum=f(0)=0.