What are the components of the vector between the origin and the polar coordinate (15, (-3pi)/4)(15,3π4)?

1 Answer
Nov 29, 2017

-(15sqrt(2))/2hati-(15sqrt(2))/2hatj1522ˆi1522ˆj

Explanation:

First convert the polar coordinate in a Cartesian coordinate. This can be done using:

x=rcos(theta)x=rcos(θ)

y=rsin(theta)y=rsin(θ)

x= 15cos(-(3pi)/4)=-(15sqrt(2))/2x=15cos(3π4)=1522

y= 15sin(-(3pi)/4)=-(15sqrt(2))/2y=15sin(3π4)=1522

Cartesian coordinates:

(-(15sqrt(2))/2 , -(15sqrt(2))/2 )(1522,1522)

Vector components.

x=-(15sqrt(2))/2hatix=1522ˆi

y=-(15sqrt(2))/2hatjy=1522ˆj

:.

-(15sqrt(2))/2hati-(15sqrt(2))/2hatj