What are the components of the vector between the origin and the polar coordinate (-4, (-7pi)/4)?

1 Answer
Aug 19, 2016

<-2sqrt2, -2sqrt 2> .-

Explanation:

In both cartesian (x, y) and polar (r, theta) forms, the

components of the position vector OP, from the origin to the point

P(x,y) are < x, y > = < r (cos theta, sin theta)> , repectively

Here, (r, theta)=(-4, -(7pi)/4). and so, the components are

<-4 cos(-7pi/4), -4 sin(-7pi/4)>, using cos (-a) = cos a and sin (-a)

=-sin a

= <-4cos(7pi/4), 4 sin (7pi/4)>

= <-4 cos (2pi-pi/4), 4 sin (2pi-pi/4) >

= <-4 cos (pi/4)- 4 sin (pi/4) >,

using cos (2pi-a)=cos a and sin (2pi-a)=-sina.

= <-4/sqrt2, -4/sqrt2 >

= <-2sqrt2, -2sqrt 2> .-