What are the components of the vector between the origin and the polar coordinate (7, (-7pi)/12)(7,7π12)?

1 Answer

Rectangular Coordinates:
x=7/4*(sqrt(6-3sqrt3)-sqrt(2+sqrt3))=-1.81173x=74(6332+3)=1.81173
y=-7/4*(sqrt(6+3sqrt3)+sqrt(2-sqrt3))=-6.76148y=74(6+33+23)=6.76148

Polar coordinates: (1.81173, pi)(1.81173,π)and(6.76148, (3pi)/2)(6.76148,3π2)

Explanation:

x=rcos thetax=rcosθ
x=7*cos((-7pi)/12)x=7cos(7π12)
if we add 1 revolution =2pi=2π to the angle then
2pi+(-7pi)/12=(17pi)/122π+7π12=17π12
x=7*cos((17pi)/12)x=7cos(17π12)
using double angle formulas

x=7*cos((17pi)/12)=7*cos(pi+(5pi)/12) x=7cos(17π12)=7cos(π+5π12)

x=7*cos(pi+(5pi)/12)x=7cos(π+5π12)
x=7[cos pi *cos ((5pi)/12)- sin pi *sin ((5pi)/12)] x=7[cosπcos(5π12)sinπsin(5π12)]

x=7*(-cos((5pi)/12)-0)x=7(cos(5π12)0)

x=7*(-1)*cos ((5pi)/12)x=7(1)cos(5π12)
Using double angle again

x=-7*cos(pi/3+pi/12)x=7cos(π3+π12)
x=-7*[cos (pi/3) *cos (pi/12)-sin (pi/3) *sin (pi/12)]x=7[cos(π3)cos(π12)sin(π3)sin(π12)]

Recall the special angles 60^@=pi/360=π3 and 30^@=pi/630=π6 and pi/12=1/2*pi/6π12=12π6 Use Half-Angle formulas for functions of pi/12π12

cos (pi/12)=sqrt((1+cos pi/6)/2)=sqrt((1+sqrt3/2)/2)=1/2sqrt(2+sqrt3)cos(π12)=1+cosπ62=1+322=122+3
sin (pi/12)=sqrt((1-cos pi/6)/2)=sqrt((1-sqrt3/2)/2)=1/2sqrt(2-sqrt3)sin(π12)=1cosπ62=1322=1223

so that

x=-7*[cos (pi/3) *cos (pi/12)-sin (pi/3) *sin (pi/12)]x=7[cos(π3)cos(π12)sin(π3)sin(π12)]

becomes

x=-7*[1/2 *(sqrt(2+sqrt3))/2-sqrt3/2 *sqrt(2-sqrt3)/2]x=7[122+3232232]

x=7/4*(sqrt(6-3sqrt3)-sqrt(2+sqrt3))=-1.81173x=74(6332+3)=1.81173

Do the same for yy and come up with

y=-7/4*(sqrt(6+3sqrt3)+sqrt(2-sqrt3))=-6.76148y=74(6+33+23)=6.76148