What are the components of the vector between the origin and the polar coordinate (5, (7pi)/12)(5,7π12)?

1 Answer
Jul 9, 2016

x= 5*cos(7*pi/12) = -1.294095226.x=5cos(7π12)=1.294095226.
y = 5*sin(7*pi/12) = 4.829629131.y=5sin(7π12)=4.829629131.

Explanation:

(r;theta) = (5;7*pi/12).(r;θ)=(5;7π12).
x = r*cos(theta).x=rcos(θ).
= 5*cos(7*pi/12) = -1.294095226.=5cos(7π12)=1.294095226.
y = 5*sin(7*pi/12) = 4.829629131.y=5sin(7π12)=4.829629131.

"check: "r^2 = x^2+y^2 = 25check: r2=x2+y2=25