What are the components of the vector between the origin and the polar coordinate (8, (11pi)/12)(8,11π12)?

1 Answer
Feb 27, 2018

Rectangular coordinates are x = -7.7274, y = 2.0706x=7.7274,y=2.0706

Explanation:

Given Polar coordinates (r,theta) - (8,(11pi)/12)(r,θ)(8,11π12)

To find rectangular coordinates (x,y)(x,y)

enter image source here

x = r cos theta = 8 * cos ((11pi)/12) = -7.7274x=rcosθ=8cos(11π12)=7.7274

y = r sin theta = 8 * sin ((11pi)/12) = 2.0706y=rsinθ=8sin(11π12)=2.0706

tan (y/x) tan theta = tan ((11pi)/12 )= -0.2679tan(yx)tanθ=tan(11π12)=0.2679