What are the extrema of f(x)=x/(x^2+9)f(x)=xx2+9 on the interval [0,5]?

1 Answer
Dec 18, 2015

Find the critical values of f(x)f(x) on the interval [0,5][0,5].

f'(x)=((x^2+9)d/dx[x]-xd/dx[x^2+9])/(x^2+9)^2

f'(x)=(x^2+9-2x^2)/(x^2+9)^2

f'(x)=-(x^2-9)/(x^2+9)^2

f'(x)=0 when x=+-3.
f'(x) is never undefined.

To find the extrema, plug in the endpoints of the interval and any critical numbers inside the interval into f(x), which, in this case, is only 3.

f(0)=0larr"absolute minimum"

f(3)=1/6larr"absolute maximum"

f(5)=5/36

Check a graph:

graph{x/(x^2+9) [-0.02, 5, -0.02, 0.2]}