What are the global and local extrema of f(x)=8x^3-4x^2+6f(x)=8x34x2+6 ?

1 Answer
Oct 30, 2016

The local extrema are (0,6)(0,6) and (1/3,158/27)(13,15827)
and the global extrema are +-oo±

Explanation:

We use (x^n)'=nx^(n-1)
Let us find the first derivative

f'(x)=24x^2-8x
For local extrema f'(x)=0
So 24x^2-8x=8x(3x-1)=0

x=0 and x=1/3

So let's do a chart of signs
xcolor(white)(aaaaa)-oocolor(white)(aaaaa)0color(white)(aaaaa)1/3color(white)(aaaaa)+oo
f'(x)color(white)(aaaaa)+color(white)(aaaaa)-color(white)(aaaaa)+
f(x)color(white)(aaaaaa)uarrcolor(white)(aaaaa)darrcolor(white)(aaaaa)uarr

So at the point (0,6) we have a local maximum
and at (1/3,158/27)
We have a point a point of inflexion f''(x)=48x-8
48x-8=0=>x=1/6
limitf(x)=-oo
xrarr-oo
limitf(x)=+oo
xrarr+oo
graph{8x^3-4x^2+6 [-2.804, 3.19, 4.285, 7.28]}