What are the local extrema, if any, of f (x) =(x^3 + 2x^2)/(3 - 5x)f(x)=x3+2x235x?

1 Answer
Nov 22, 2016

Local Extrema:

x~~-1.15x1.15

x=0x=0

x~~1.05x1.05

Explanation:

Find the derivative f'(x)

Set f'(x)=0

These are your critical values and potential local extrema.

Draw a number line with these values.

Plug in values within each interval;

if f'(x) >0, the function is increasing.

if f'(x) <0, the function is decreasing.

When the function changes from negative to positive and is continuous at that point, there is a local minimum; and vice versa.

f'(x)=[(3x^2+4x)(3-5x)-(-5)(x^3+2x^2)]/(3-5x)^2

f'(x)=[9x^2-15x^3+12x-20x^2+5x^3+10x^2]/(3-5x)^2

f'(x)=(-10x^3-x^2+12x)/(3-5x)^2

f'(x)=[-x(10x^2+x-12)]/(3-5x)^2

Critical values:

x=0

x=(sqrt(481)-1)/20~~1.05
x=-(sqrt(481)+1)/20~~-1.15

x!=3/5

<------(-1.15)------(0)-----(3/5)-----(1.05)------>

Plug in values between these intervals:

You will get a:
Positive value on (-oo, -1.15)
Negative on (-1.15, 0)
Positive on (0, 3/5)
Positive on (3/5, 1.05)
Negative on (1.05, oo)

:. Your local maximums will be when:

x=-1.15 and x=1.05

Your local minimum will be when:

x=0