What are the local extrema of f(x)= x/((x-2)(x-4)^3)f(x)=x(x2)(x4)3?

1 Answer

x_1=2.430500874043x1=2.430500874043 and y_1=-1.4602879768904y1=1.4602879768904 Maximum Point

x_2=-1.0971675407097x2=1.0971675407097 and y_2=-0.002674986072485y2=0.002674986072485 Minimum Point

Explanation:

Determine the derivative of f(x)f(x)

f' (x)
=((x-2)(x-4)^3*1-x[(x-2)*3(x-4)^2 +(x-4)^3 *1] )/[(x-2)(x-4)^3]^2

Take the numerator then equate to zero

((x-2)(x-4)^3*1-x[(x-2)*3(x-4)^2 +(x-4)^3 *1] )=0

simplify

(x-2)(x-4)^3-3x(x-2)(x-4)^2-x(x-4)^3=0

Factoring the common term

(x-4)^2*[(x-2)(x-4)-3x(x-2)-x(x-4)]=0

(x-4)^2*(x^2-6x+8-3x^2+6x-x^2+4x)=0

(x-4)^2(-3x^2+4x+8)=0

The values of x are:

x=4 an asymptote

x_1=(4+sqrt(112))/6=2.430500874043
Use x_1 to obtain y_1=-1.4602879768904 Maximum

x_2=(4-sqrt(112))/6=-1.0971675407097
Use x_2 to obtain y_2=-0.002674986072485# Minimum