What are the local extrema of f(x)= xe^-xf(x)=xex?

1 Answer
Oct 19, 2016

(1,e^-1)(1,e1)

Explanation:

We need to use the product rule: d/dx(uv) = u(dv)/dx+v(du)/dx ddx(uv)=udvdx+vdudx

:. f'(x) = xd/dx(e^-x) + e^-x d/dx(x)
:. f'(x) = x(-e^-x) + e^-x (1)
:. f'(x) = e^-x-xe^-x

At a min/max f'(x)=0
f'(x)=0 => e^-x(1-x) = 0
Now, e^x > 0 AA x in RR
:. f'(x)=0 => (1-x) = 0 => x=1

x=1 => f(1)=1e^-1 = e^-1

Hence, there a single turning point at (1,e^-1)

graph{xe^-x [-10, 10, -5, 5]}