What is the arc length of #f(x)=(3/2)x^(2/3)# on #x in [1,8]#?
1 Answer
Mar 19, 2018
Explanation:
#f(x)=3/2x^(2/3)#
#f'(x)=x^(-1/3)#
Arc length is given by:
#L=int_1^8sqrt(1+x^(-2/3))dx#
Simplify:
#L=int_1^8sqrt(1+x^(2/3))(x^(-1/3)dx)#
Apply the substitution
#L=3/2int_1^4sqrt(1+u)du#
Integrate directly:
#L=[(1+u)^(3/2)]_1^4#
Hence
#L=5sqrt5-2sqrt2#