What is the arc length of #f(x)=x^2-2x+35# on #x in [1,7]#?
1 Answer
Mar 7, 2018
The arc length is
Explanation:
#y=x^2-2x+35#
#y'=2x-2#
Arc length is given by:
#L=int_1^7sqrt(1+(2x-2)^2)dx#
Apply the substitution
#L=1/2intsec^3thetad theta#
This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:
#L=1/4[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the substitution:
#L=1/4[(2x-2)sqrt(1+(2x-2)^2)+ln|(2x-2)+sqrt(1+(2x-2)^2)|]_1^7#
Insert the limits of integration:
#L=3sqrt(145)+1/4ln(12+sqrt145)#