What is the arc length of #f(x) =x -tanx # on #x in [pi/12,(pi)/8] #?
1 Answer
Explanation:
#f(x)=x-tanx#
#f'(x)=-tan^2x#
Arc length is given by:
#L=int_(pi/12)^(pi/8)sqrt(1+tan^4x)dx#
For
#L=int_(pi/12)^(pi/8)sum_(n=0)^oo((1/2),(n))tan^(4n)xdx#
Isolate the
#L=int_(pi/12)^(pi/8)dx+sum_(n=1)^oo((1/2),(n))int_(pi/12)^(pi/8)tan^(4n)xdx#
Apply the substitution
#L=pi/8-pi/12+sum_(n=1)^oo((1/2),(n))intu^(4n)/(u^2+1)du#
Take the series expansion of
#L=pi/24+sum_(n=1)^oo((1/2),(n))intu^(4n){sum_(m=0)^oo((-1),(m))u^(2m))}du#
Simplify:
#L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))intu^(4n+2m)du#
Integrate directly:
#L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))([u^(1+4n+2m)])/(1+4n+2m)#
Reverse the last substitution:
#L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)[tan^(1+4n+2m)x]_(pi/12)^(pi/8)#
Insert the limits of integration:
#L=pi/24+sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((-1),(m))1/(1+4n+2m)(tan^(1+4n+2m)(pi/8)-tan^(1+4n+2m)(pi/12))#