What is the arclength of f(x)=x^3-xe^xf(x)=x3xex on x in [-1,0]x[1,0]?

1 Answer

Arc length s=1.54116s=1.54116 units

Explanation:

The formula to determine length of arc s:
s=int_a^bsqrt(1+f' (x)^2) dx
a=-1 and b=0 the limits

f(x)=x^3-x e^x

f' (x) 3 x^2 -[x*e^x*1+1*e^x]
f' (x) = 3x^2 - x e^x - e^x

s=int_-1^0 sqrt(1+(3x^2 - x e^x - e^x)^2) dx

There is no simple formula to evaluate the integral, so try using Simpson's Rule:

s= 1.54116 units

Just observe the graph from x=-1 to x=0
graph{y=x^3-x e^x [-2.5, 2.5, -1.25, 1.25]}