What is the argument and module of the complex number sin(i+3) ?

1 Answer
Mar 6, 2017

See below.

Explanation:

Using de Moivre's identity

sinx=eixeix2i we have

sin(i+3)=ei(i+3)ei(i+3)2i=12i(e1+3ie13i)=

=(12e+12e)sin(3)+i(12e12e)cos(3)=

=1+e42e2cos(6)2eeiϕ

where

ϕ=tan1(e21e2+1cot(3))