What is the phase shift, vertical displacement with respect to y=sinxy=sinx for the graph y=sin(x+(2pi)/3)+5y=sin(x+2π3)+5?

1 Answer
Feb 18, 2018

See below.

Explanation:

We can represent a trigonometrical function in the following form:

y=asin(bx+c)+dy=asin(bx+c)+d

Where:

  • color(white)(8)bbacolor(white)(88)= "amplitude"8a88=amplitude

  • bb((2pi)/b)color(white)(8)= "the period" ( note bb(2pi) is the normal period of the sine function )

  • bb((-c)/b)color(white)(8)= "the phase shift"

  • color(white)(8)bbdcolor(white)(888)=" the vertical shift"

From example:

y=sin(x+(2pi)/3)+5

Amplitude = bba = color(blue)(1)

Period = bb((2pi)/b)=(2pi)/1=color(blue)(2pi)

Phase shift = bb((-c)/b)=((-2pi)/3)/1= color(blue)(-(2pi)/3)

Vertical shift = bbd=color(blue)(5)

So y=sin(x+(2pi)/3)+5color(white)(88) is color(white)(888)y=sin(x):

Translated 5 units in the positive y direction, and shifted (2pi)/3 units in the negative x direction.

GRAPH:

enter image source here