What is the relative maximum of y = csc (x)?

1 Answer
Oct 9, 2016

y=cscx=1/sinx=(sinx)^-1y=cscx=1sinx=(sinx)1

To find a max/min we find the first derivative and find the values for which the derivative is zero.

y=(sinx)^-1y=(sinx)1
:.y'=(-1)(sinx)^-2(cosx) (chain rule)
:.y'=-cosx/sin^2x

At max/min, y'=0=>-cosx/sin^2x=0
:.cosx=0
:.x=-pi/2,pi/2, ...

When x=pi/2=>y=1/sin(pi/2)=1
When x=-pi/2=>y=1/sin(-pi/2)=-1

So there are turning points at (-pi/2,-1) and (pi/2,1)

If we look at the graph of y=cscx the we observe that (-pi/2,-1) is a relative maximum and (pi/2,1) is a relative minimum.

graph{csc x [-4, 4, -5, 5]}