What is the relative minimum, relative maximum, and points of inflection of f(x) = x^4 - 4x^2f(x)=x44x2?

1 Answer
Nov 24, 2016

f'(x)=4x^3-8x
f'(x)=4x(x^2-2)

4x(x^2-2)=0

x=0, x=+-sqrt2

The multiplicity of each of these zeros is odd, therefore, there will be a minimum or maximum at each value.

For:
x>sqrt2
y>0
Positive slope

For:
0 < x < sqrt2
y < 0
Negative slope

For:
-sqrt2 < x < 0
y > 0
Positive slope

For :
x < -sqrt2
y < 0
Negative slope

:. x=sqrt2 => Local minimum
:. x=0 => Local maximum
:. x=-sqrt2 => Local minimum

f''(x)=12x^2-8
f''(x)=4(3x^2-2)

3x^2-2=0
x=+-sqrt(2/3)

For:
x>sqrt(2/3)
y>0
Concave up

For:
-sqrt(2/3) < x < sqrt(2/3)
y<0
Concave down

For:
x < -sqrt(2/3)
y>0
Concave up

:. There are points of inflection at:
x=+-sqrt(2/3)