What is the trigonometric form of (13i)?

1 Answer
May 2, 2016

10(cos(1.25)+isin(1.25))

Explanation:

Given a complex number z = x + iy , then in trig.form it is written

z = r(cosθ+isinθ)

where |z|=|x+iy|=r=x2+y2

and θ=tan1(yx)

here x = 1 and y = - 3

r=12+(3)2=10

and θ=tan1(3)=1.25 radians

(13i)=10(cos(1.25)+isin(1.25))